Modelling Aluminium Clusters with an Empirical Many-Body Potential
نویسندگان
چکیده
An empirical two-plus-three-body atomistic potential, derived by fitting experimental data pertaining to bulk aluminium, has been applied to study the structures and growth patterns of small aluminium clusters. The high dimensionality of the nuclear configuration space for clusters results in an extremely large number of isomers – local minima on the potential energy hypersurface. Global optimisation (i.e. searching for the lowest energy structure) was carried out, using Random Search and Monte Carlo Simulated Annealing methods, for Al2 Al20. The results of random searching have been used to put lower bounds on the number of minima for these nuclearities and the efficiency of the Monte Carlo Simulated Annealing approach has been demonstrated. Detailed results using both search methods are presented for Al19. Comparisons are made with the results of previous calculations – using electronic structure and empirical potential methods and good agreement is generally observed. While many of the global minima correspond to structures (mostly based on icosahedral growth) which are also global minima for Lennard-Jones or Morse clusters, a number of new structures have been identified for AlN clusters – notably for N = 9, 16, 17, 18 and 20.
منابع مشابه
A STUDY OF SMALL VACANCY CLUSTERS IN IRON USING MANY BODY POTENTIAL
Computer simulation techniques are employed to obtain binding energies of 2,3 and 4 vacancy clusters in a -iron using the Finnis Sinclair many body potential. The results are compared with earlier pair potential calculations. The many body potential is found to be quite successful in simulating vacancy clusters
متن کاملDynamic modelling of hardness changes of aluminium nanostructure during mechanical ball milling process
In this research, the feasibility of using mathematical modelling in the ball milling process has been evaluated to verify the hardness changes of an aluminium nanostructure. Considering the model of normal force displacement (NFD), the radius of elastic-plastic and normal displacement of two balls were computed by applying analytical modelling and coding in MATLAB. Properties of balls and alum...
متن کاملThe Investigation of Modelling Material Behavior in Autofrettaged Tubes Made from Aluminium Alloys
Normal 0 false false false EN-US X-NONE AR-SA The ratio of compression yield strength to the initial tensile yield strength is called Bauschinger effect factor, BEF. A nonlinear strain hardening mathematical model is proposed for 7075 aluminium alloy (A7075). Uniaxial tension-compression experimental data are used to figure out a suitable model to study the BEF. Hence, uniaxial tension-co...
متن کاملThe Use of Modelling Techniques to Describe Recrystallized Grain Size of Commercially Processed 6000 Series Aluminium Alloy Components
The development of grain size during commercial thermomechanical processing of 6000 series aluminium alloy components has been investigated by combining physical experiments and modelling techniques. A range of grain structures was generated by varying both deformation temperature and heat treatment practice. The different deformation conditions were simulated by finite element modelling, which...
متن کاملNumerical modelling of the underground roadways in coal mines– uncertainties caused by use of empirical-based downgrading methods and in situ stresses
Numerical modelling techniques are not new for mining industry and civil engineering projects anymore. These techniques have been widely used for rock engineering problems such as stability analysis and support design of roadways and tunnels, caving and subsidence prediction, and stability analysis of rock slopes. Despite the significant advancement in the computational mechanics and availabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007